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Abstract
For the integrate-and-fire model and the Hodgkin–Huxley model, we consider
how current inputs including α-wave and square-wave affect their outputs.
Firstly the usual approximation is employed to approximate the models with
current inputs which quantitatively reveals the difference between instantaneous
and noninstantaneous (current) inputs. When the rising time of α-wave
inputs is long or the ratio between the inhibitory and excitatory inputs is
close to one, the usual approximation fails to approximate the α-wave inputs
in the integrate-and-fire model. For the Hodgkin–Huxley model, the usual
approximation in general gives an unsatisfying approximation. A novel
approach based upon a superposition of ‘coloured’ and ‘white’ noise is then
proposed to replace the usual approximation. Numerical results show that
the novel approach substantially improves the approximation within widely
physiologically reasonable regions of the rising time of α-wave inputs.

PACS numbers: 0540J, 0250, 0590, 8435, 8719L

1. Introduction

Although the single neuron model with random inputs has been widely studied in computo, most
such studies are done under the assumption that inputs are instantaneous [1–5,7,8,15,19,24].
This assumption is certainly an approximation to the physiological data: any physical
process takes time to accomplish. The rising time of excitatory postsynaptic potentials, for
example, ranges from a few milliseconds to a few hundred milliseconds (see [17, p 184]).
Theoretically in [25] the authors have found the interesting impact of EPSP rising time courses
in synchronizing neuronal activities.

In this paper we address the following two important issues: how the time courses of
EPSPs and IPSPs affect the output of a single neuron model—the integrate-and-fire model
and the Hodgkin–Huxley model—and how to employ the Ornstein–Uhlenbeck type process to
approximate the models with current inputs. The second issue is important since we all know
that theoretically it is very difficult to deal with a system with Poissonian form inputs. For
example using the Ornstein–Uhlenbeck process to approximate neuronal models with Poisson
inputs has been investigated for decades.
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We take into account the two most commonly encountered noninstantaneous inputs: α-
wave and square-wave inputs. We find that the mean and variance of α-wave and square-wave
inputs are both weaker than that of Poisson inputs, as one might expect, and therefore the
mean of interspike intervals (ISIs) of efferent spike trains of the integrate-and-fire model and
the Hodgkin–Huxley model is greater than that of Poisson inputs. The classical approach, the
usual approximation, is first applied to approximate the models with current inputs. By the
usual approximation, we mean to approximate a stochastic process by a diffusion process, i.e.

dxt = b(xt, t) dt + σ(xt, t) dBt

where Bt is the standard Brownian motion (‘white’ noise) and b, σ are appropriately defined
functions. For the integrate-and-fire model, the approximation to the mean firing time of
efferent ISIs is always valid when the ratio between inhibitory and excitatory inputs is low, but
not for the CV. In other words, in the regions of a small ratio between inhibitory and excitatory
inputs and in order to tell the difference between inputs from different sources, we have to
consider the high order statistics of efferent spike trains. Combining our previous results [10]
and the results in this paper, we further conclude that in the regions of high ratio between
inhibitory and excitatory inputs, the mean firing time is very sensitive to small perturbations.
For the Hodgkin–Huxley model we find that the usual approximation is not satisfied even
at a very low ratio between inhibitory and excitatory inputs. This also reveals an essential
difference between some simple, linear model such as the integrate-and-fire model and the
biophysical, nonlinear model such as the Hodgkin–Huxley model. We then propose a novel
scheme to approximate the models with current inputs: to replace the ‘white’ noise in the
usual approximation by a superposition of ‘coloured’ and ‘white’ noise. Numerical results
show that the novel scheme considerably improves the approximation, for both the integrate-
and-fire and the Hodgkin–Huxley model, within widely physiologically reasonable regions of
model parameters.

This is the third of our series of papers aiming to elucidate how more realistic inputs,
in contrast to conventional i.i.d. Poisson inputs which have been intensively studied in
the literature, affect the outputs of simple neuronal models and thus possibly to provide a
full spectrum of the behaviour inherent in these models. This way we can document more
thoroughly the restrictions and potential of the models. In [8] we have considered the behaviour
of the integrate-and-fire model subjected to independent inputs with different distribution tails;
in [10] we have taken into account the behaviour of the integrate-and-fire model with correlated
inputs. On the other hand we have generalized these considerations to biophysical models and
some intriguing properties have been found [3, 11].

2. Integrate-and-fire model with synaptic inputs

Suppose that, when the membrane potential Vt is between the resting potential Vrest and the
threshold Vthre, it is given by

dVt = − 1

γ
(Vt − Vrest) dt + Isyn(t) dt (2.1)

where 1/γ is the decay rate. When Vt is greater than Vthre a spike is emitted and Vt is reset to
Vrest. The model is termed the integrate-and-fire model. Synaptic input Isyn(t) is modelled by

Isyn(t) = a

∞∑
k=1

f (t − T E
k )I{t�T E

k } − b

∞∑
k=1

f (t − T I
k )I{t�T I

k }

where T E
k = ∑k

i=1 t
E
i (T I

k = ∑k
i=1 t

I
i ) for i.i.d. random sequences tE

i , t
I
i , i = 1, 2, . . . ,

a > 0, b > 0 the magnitude of single EPSP and IPSP and I is the indicator function. In
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the remaining part of the paper we always assume that the distribution of tE
i is identical to t I

i

and so, when we speak of a property of EPSP inputs we simply imply the same property is
true for IPSP inputs. tE

1 is assumed to be exponentially distributed with intensity λ.

Example 1. When

f (t − T E
k ) = δ(t−T E

k )(0)

then N(t) = ∫ t

0 Isyn(s) ds (instantaneous inputs) is the Poisson process with intensity λ.

The Poisson process input is an approximation to a cell’s synaptic inputs. It assumes
that it responds to the input instantaneously. There are some other optimal properties such as
optimizing the mutual information, etc., for Poisson inputs [20].

Example 2. When

f (t − T E
k ) = α2(t − T E

k ) exp (−α(t − T E
k )) t > T E

k

we have α-wave inputs or an α-synapse. α-wave input is, of course, again an approximation to
actual current inputs. We refer the reader to [24] for a discussion on the choice of this function.
In contrast to Poisson inputs now the inputs take time to rise and then decay.

The rising time is 1/α, which is the characteristic time of an α-wave synapse. Here we
emphasize that for the same neuron the time course of input EPSPs might be very different: for
example, the rising time for an increased-conductance EPSP due to the opening of a channel
could be a few milliseconds, but the rising time for a decreased-conductance EPSP is a few
hundred milliseconds (see [17, p 184]). When α is small, α-wave inputs can be thought of
as an approximation to continuous current inputs; when α is large they approximate Poisson
inputs.

Example 3. When

f (t − T E
k ) = 1

δ
I{T E

k <t<T E
K+δ}

we have square wave inputs and its duration time is δ.

A slightly more general model than the integrate-and-fire model defined above is the
integrate-and-fire model with reversal potentials [18, 26] defined by

dZt = − 1

γ
(Zt − Vrest) dt + Īsyn(t) dt (2.2)

where Vrest is the resting potential. Synaptic inputs are given by

Īsyn(t) = ā(VE − Zt)

∞∑
k=1

f (t − T E
k )I{t�T E

k } + b̄(VI − Zt)

∞∑
k=1

f (t − T I
k )I{t�T I

k }

ā, b̄ are the magnitude of a single EPSP and IPSP, respectively, and VE and VI are the reversal
potentials. Zt (membrane potential) is now a birth-and-death process with boundaries VE and
VI. Once Zt is below Vrest the decay term Zt − Vrest will push the membrane potential Zt up,
whereas when Zt is above Vrest the decay term will hyperpolarize it. By choosing different
reversal potentials and characteristic times of f , Īsyn(t) corresponds to different kinds of
synapses such as NMDA, AMPA GABAA and GABAB .
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3. Usual approximation

In order to assess the impact of input time courses on the models, in this section we first
calculate the mean and variance of inputs, which in turn gives us the required estimations
needed for the usual approximation.

Let Tk = ∑k
i=1 ti where ti , i = 1, . . . , are negative exponentially distributed random

variables with rate λ.

3.1. Analytical results

For carrying out the usual approximation, we only need to know the mean and variance. We
can calculate the mean and variance of inputs either in current Isyn(t) or in voltage

∫ t

0 Isyn(s) ds.
An easy calculation on α-wave inputs tells us that, in order to recover the usual approximation
for the Poisson process, i.e. when α → ∞ the usual approximation to the α-wave input is
coincident with that to the Poisson input, we have to consider the mean and variance of inputs
in voltage as we develop below.

Let us define

µ(t, λ) = E

∫ t

0
Isyn(s) ds

σ 2(t, λ) = E

( ∫ t

0
Isyn(s) ds

)2

−
(
E

∫ t

0
Isyn(s) ds

)2 (3.1)

the mean and variance of inputs in voltage. We then have the following lemma.

Lemma 1. If
∫ ∞

0 f (s) ds = 1 and

Isyn(t) =
∞∑
k=1

f (t − Tk)I{t�Tk}

we have

µ(t, λ) = λt

[
1 −

∫ ∞

t

f (u) du

]
− λ

∫ t

0
uf (u) du (3.2)

σ 2(t, λ) = λt

[
1 −

∫ ∞

t

f (u) du

]2

− λ

∫ t

0

∫ t

0
max(u, v)f (u)f (v) du dv. (3.3)

Proof. Through some routine algebraic calculation, we can obtain

fTk (x) = e−λxxk−1 λk

(k − 1)!
x � 0

fTk,Tj (x, y) = e−λx λk(x − y)k−j−1yj−1

(j − 1)!(k − j − 1)!
0 � y � x 1 � j < k

where fTk (x) is the probability density function of Tk and fTk,Tj (x, y) is the joint probability
density function of (Tk, Tj ).

Notice that∫ t

0
Isyn(s) ds =

∫ t

0

∞∑
k=1

f (s − Tk)I{s�Tk} dsI{t�Tk}.
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We have

E

∫ t

0
Isyn(s) ds =

∫ t

0

∫ t

0

∞∑
k=1

f (s − x)I{s�x}fTk (x) ds dx

= λ

∫ t

0

∫ t

0
f (s − x)I{s�x} ds dx

= λ

∫ t

0
(t − s)f (s) ds

which gives us the desired expression for equation (3.2).
It is easy to see that

E

( ∫ t

0
Isyn(s) ds

)2

= Mt + Dt

where

Mt = E

∞∑
k=1

( ∫ t−Tk

0
f (u) du

)2

I{t�Tk}

Dt = 2E
∞∑
k=2

k−1∑
j=1

I{t�Tk}I{t�Tj }
∫ t−Tk

0
f (u) du

∫ t−Tj

0
f (v) dv.

We calculate Dt first:

Dt = 2
∫ t

0

∫ x

0

∫ t−x

0

∫ t−y

0
f (u)f (v)

∞∑
k=2

k−1∑
j=1

fTk,Tj (x, y) du dv dy dx

= 2λ2
∫ t

0

∫ x

0

∫ t−x

0

∫ t−y

0
f (u)f (v) du dv dy dx

= 2λ2
∫ t

0

∫ u

0
f (u)f (v)(t − u)(t − v) du dv

= λ2
∫ t

0

∫ t

0
f (u)f (v)(t − u)(t − v) du dv

=
(
E

∫ t

0
Isyn(s) ds

)2

.

Therefore we have

E

( ∫ t

0
Isyn(s) ds

)2

−
(
E

∫ t

0
Isyn(s) ds

)2

= E

( ∫ t

0
Isyn(s) ds

)2

−
(
E

∫ t

0
Isyn(s) ds

)2

= Mt = λ

∫ t

0

( ∫ x

0
f (u) du

)2

dx

and so equation (3.3) follows. �
A comparison with Poisson input is informative here. When f (t) = δt(0) we see that

µ(t, λ) = λt and σ 2(λ, t) = λt . The lemma above tells us that the input mean (equation (3.2))
and variance (equation (3.3)) are both smaller than that of the Poisson process, no matter what
the function f is.

Lemma 1 also tells that the usual approximation [24] for a current input without reversal
potentials takes the form

Isyn(t) dt = µ′(t, λ) dt +
√
(σ 2(t, λ))′ dBt

= λµ(t) dt +
√
λµ(t) dBt (3.4)
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where µ(t) = 1 − ∫ ∞
t

f (u) du and (·)′ is the derivative with respect to t . Note that when
f (t) = δt(0) the formula above again gives us the familiar one in the literature [24].

The analogous conclusion is true for the model with reversal potentials. Equation (3.4) is
a general and useful formula which tells us that, for any current input, by using equation (3.4)
we could have its usual approximation. Another feature of equation (3.4) is that, compared to
Poisson inputs, we only have one additional free parameter µ(t) which reflects the effect of
current inputs. Hence for any given current inputs, by equation (3.2) we can calculate the exact
form of µ(t). In terms of µ(t) we obtain an approximation to models with current inputs.

3.2. α-wave

In this section we consider the stochastic process

Isyn(t) =
∞∑
k=1

α2(t − Tk) exp (−α(t − Tk))I{t�Tk}.

Let us assume that the neuron connects with p excitatory synapses and q inhibitory
synapses. Each excitatory synapses transmit EPSPs at a rate of λE Hz and each inhibitory
synapses transmit IPSPs at a rate of λI Hz, i.e. λ = λEp.

As a corollary of lemma 1 we have the following conclusion.

Theorem 1. For α-wave inputs we have the following usual approximation:

dVt = − 1

γ
(Vt − Vrest) dt + disyn (t) (3.5)

with

disyn (t) = [apλE − bqλI]µ(t) dt +
[√

a2pλE + b2qλI

]
µ(t) dBt (3.6)

and

µ(t) = 1 − exp (−αt) − αt exp (−αt). (3.7)

As a consequence of theorem 1, we have the following theorem for the model with reversal
potentials.

Theorem 2. For α-synapse inputs we have the following usual approximation:

dZt = − 1

γ
(Zt − Vrest) dt + dīsyn (t) (3.8)

with

dīsyn (t) = [āλEp(Zt − VE) − b̄λIq(Zt − VI)]µ(t) dt

+

[√
ā2pλE(Zt − VE)2 + b̄2qλI(Zt − VI)2

]
µ(t) dBt. (3.9)

All conclusions above indicate that, in terms of the usual approximation, noninstantaneous
inputs are equivalent to instantaneous inputs by multiplying µ(t), which converge to one
depending only on the characteristic time, α, of the input.
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3.3. Square-wave

Square-wave input is another commonly used form of EPSP and IPSP defined by

Isyn(t) =
∞∑
i=1

1

δ
I{Ti�t<Ti+δ}.

By an application of lemma 1, we have the following conclusions.

Theorem 3. For square-wave inputs we have the following usual approximation:

disyn (t) = [apλE − bqλI]µ̄(t) dt +
[√

a2pλE + b2qλI

]
µ̄(t) dBt (3.10)

where

µ̄(t) =



t

δ
when t � δ

1 otherwise.
(3.11)

The conclusions above imply that the transition period for square-wave input is t = δ: as
soon as t > δ square-wave input is identical to that of Poisson input, provided that the usual
approximation is used. It is also easily seen that, for square-wave input, its mean, variance
and CV are all smaller than that of the Poisson process.

We have similar conclusions for the model with reversal potentials.

Theorem 4. For square-wave inputs we have the following usual approximation:

dīsyn (t) = [āpλE(VE − Zt) + b̄qλI(VI − Zt)]µ̄(t) dt

+

[√
ā2pλE(Zt − VE)2 + b̄2qλI(Zt − VI)2

]
µ̄(t) dBt. (3.12)

3.4. Numerical results

We employ the following parameters in our numerical simulations: a = b = 0.5 mV, Vrest =
−50 mV, Vthre = −30 mV, p = q = 100, λE = 100 Hz and λI = 0, 10, 20, . . . , 100 Hz,
which is the set of parameters used elsewhere [2,4,6,7,9] and is thought to be in physiological
regions of the visual cortex cells [22, 23]. As before [2, 4, 6, 7, 9] we numerically solve the
membrane equations of Vt by an Euler scheme [12] with a step size of 0.01. Further small
time steps are used and we conclude no significant improvements are obtained. In simulations,
1000 spikes are generated for each set of parameters with V0 = Vrest and Isyn(0) = 0. For
minimizing the influence of nonstationarity (Vt is reset to Vrest after spiking, but Isyn(t) is not
reset to zero) the first five spikes are discarded in all subsequent analysis.

From simulation results we see that, when α is large (see figure 3) or δ is small (see
figure 1), and when λI/λE is small, the difference between α-wave or square-wave input and
Poisson inputs is small; but when λI/λE approaches one, the difference becomes obvious.

We further consider the breakdown of the usual approximation. In figure 4 we go to an
extreme case by showing numerical results of α = 0.01, that is an EPSP takes 100 ms to
rise (see example 2). As one might expect, the CV of efferent spike trains is much smaller
than that with the usual approximaiton inputs. However, and most interestingly, the mean of
ISIs of efferent spike trains is still close to that of the usual approximation inputs. The mean
of efferent ISIs predominantly depends on the mean of input EPSPs and IPSPs, as we have
observed in the case of correlated inputs (see [10, figures 2–5]), but the variance is sensitive
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Figure 1. Mean and CV of square-wave inputs of the integrate-and-fire model with δ = 1 ms and the
usual approximation inputs (numerical results). When λI is smaller than 90 Hz, the discrepancy
between the usual approximation inputs and square-wave inputs is small. In general the usual
approximation gives an excellent approximation to the square-wave inputs.

to input variance. The results suggest simply that the output mean firing time depends on the
deterministic part of the inputs. We consider the following equation:

dVt = −Vt

γ
dt + (apλE − bqλI) dt (3.13)

i.e. equation (3.5) with stochastic term being zero and µ(t) = 1. Solving equation (3.13), we
obtain

Vt = (apλE − bqλI)γ

(
1 − exp

(
− t

γ

))
.

Therefore the time at which Vt reaches Vthre is

T = γ log(1 − Vth/(γ (apλE − bqλI))). (3.14)

We compare T with the mean firing time obtained in terms of the usual approximation inputs1

in figure 2. A reasonable approximation is obtained when λI < 80 Hz. Note that this
approximation is only valid in the regions of λI in which the attractor of the deterministic
part is above the threshold (see [9] for details).

A neuron is supposed to distinguish inputs between different sources and so successfully
interacts with its environment. If we assume that different rising times of afferent EPSPs—
inputs from different sources—carry different information, then in terms of the mean firing time
the integrate-and-fire model cannot tell the difference, comparing figure 3 with 4. Nevertheless,
the second order statistics can do it (see figures 1–4). There are many authors who have
suggested that higher order statistics are necessary for information processing. Here we
provide a concrete example to show the importance of higher order statistics in neuronal

1 Since we only consider model behaviour when inputs become stationary, the mean firing time obtained in terms of
the usual approximation for the integrate-and-fire model are almost identical, see figures 1, 3 and 4.
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Figure 2. Mean of α-wave inputs with α = 1 (numerical results) and T defined by equation (3.14)
of the integrate-and-fire model. We see that, when the ratio between inhibitory and excitatory
inputs is small (λI < 80 Hz ), T gives rise to an excellent approximation. A comparison with
figure 4 with α = 0.01 tells us that the same conclusion is true, see also figure 1.

M
ea

n 
fir

in
g 

tim
e 

(m
se

c)

Inhibitory input (Hz)

(a)

Alpha-wave
Novel
Usual

C
V

Inhibitory input (Hz)

(b)

Alpha-wave
Novel
Usual

0

50

100

150

200

0 20 40 60 80 100 0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Figure 3. Output mean and CV of the integrate-and-fire model of α-wave inputs with α = 1 and
the usual approximaiton inputs (numerical results). When λI is smaller than 80 Hz, the discrepancy
between the usual approximation inputs and α-wave inputs is small.
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Figure 4. Mean and CV of the integrate-and-fire model of α-wave inputs with α = 0.01, the usual
approximaiton inputs and the novel scheme inputs (numerical results). We are only able to simulate
for λI up to 70 Hz. We see that, when λI is smaller than 70 Hz, the discrepancy of mean between
the usual approximation inputs and α-wave inputs is small, but not for CV.

model behaviour. In contrast, if we assume that the time course of inputs is irrelevant, and
only the occurrence time of spikes carries information, then in the region where λI/λE is small,
the integrate-and-fire device serves as an ideal unit for information processing: in terms of the
mean firing time it is very robust with respect to different time courses of EPSPs and IPSPs,
as shown in figures 1–4. But in the region where λI/λE approaches one, the integrate-and-fire
device becomes very sensitive to the fluctuation of inputs.

In conclusion (figures 1–4), when the ratio between inhibitory and excitatory inputs is
small (for discussions of this issue, see, e.g., [2–4,6–10,16,21,22]), in terms of the mean firing
time, noninstantaneous inputs and the usual approximation inputs produce similar results.
When the ratio approaches one, the discrepancy between two input patterns becomes obvious
and thus the usual approximation breaks down. This conclusion simply indicates that if we
suppose a neuron operates in the exact balance region, then using the usual approximation to
replace the noninstantaneous inputs, which is mostly used in the literature, is not appropriate.

Can we develop a new approximation scheme to improve the approximation? This is the
task of the next section.

4. A novel approach

The method presented in the previous section, i.e. the usual approximation, is well known
in the literature. But as we have shown before, it fails to approximate the true behaviour of
the model with current inputs when either the ratio between inhibitory and excitatory inputs
approaches one or the rising time is slow. It is then a natural question to ask what we have
missed in the usual approximation.
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Looking at the variance σ(t, λ) given by

σ(t, λ)2 = λ

[
t − 11

4α
+

4

α
e−αt + 2te−αt − 5

4α
e−2αt − 3t

2
e−2αt − αt2

2
e−2αt

]
(4.1)

we see that the leading term we omit in the usual approximation is 11/4α. Since in the usual
approximation only the derivative of σ(t, λ) is used, the constant term disappears. We therefore
want to find a process ηα(t) satisfying the property that

〈(Bt − ηα(t))2〉 = t − 11

4α
+ O(t exp (−αt)).

We choose an Ornstein–Uhlenbeck process given by

dξα(t) = −α

2
ξα(t) dt + dBt

ξα(0) = 0.
(4.2)

Let ηα(t) = cξα(t), where c is a constant satisfying

〈(Bt − ηα(t))2〉 = t + c2
∫ t

0
exp (−α(t − s)) ds − c

∫ t

0
exp

(
−α

2
(t − s)

)
ds. (4.3)

We find a new scheme ĩsyn(t) to approximate Isyn(t) defined by

dĩsyn (t) = (apλE − bqλI) dt +
√
a2pλE + b2qλI dBt −

√
a2pλE + b2qλI

4 − √
5

2
dξα(t).

(4.4)

For specification we write down the full integrate-and-fire model again here:

dvt = − 1

γ
(vt − Vrest) dt + (apλE − bqλI) dt +

√
a2pλE + b2qλI

[
dBt − 4 − √

5

2
dξα(t)

]

dξα(t) = −α

2
ξα(t) dt + dBt ξα(0) = 0.

(4.5)

In figures 3 and 4 numerical simulations are shown with α = 1 and 0.01. We see that a
substantial improvement is achieved with the new scheme defined by equation (4.5).

We now give a few words on the novel approach presented here. Instead of the widely used
Brownian motion approximation to the α wave, we have to used a superposition of the ‘white’
and ‘coloured’ noise approximation, i.e. the term Bt − ηα(t). The fact that this calibration
improves the usual approximation is, however, not surprising at all. Due to the current input,
we naturally expect that there are temporal correlations in inputs. We have tried different ways
to approximate the auto-correlation of Isyn(t) which is

〈(Isyn(t) − 〈Isyn(t)〉)(Isyn(s) − 〈Isyn(s)〉)〉

= − 2λg2

α
+ λg2s +

2λg2

α
exp (−αs) + λg2s exp (−αs) + λg2 exp (−α(t − s))

×
[

− 3

4α
− 1

4
(t − s) +

2

α
exp (−αs) + s exp (−αs) + (t − s) exp (−αs)

− 5

4α
exp (−2αs) − 3s

2
exp (−2αs) − 3

4
(t − s) exp (−2αs)

−αs

2
(t − s) exp (−2αs) − αs2

2
exp (−2αs)

]
(4.6)
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for t � s. When t = s equation (4.6) is (4.1). Nevertheless, it is a hard problem due
to terms taking the form of t exp (−t) in the auto-correlation of Isyn(t). We then simply
approximate the first order term t − 11/(4α) and omit all terms containing exp (−t) (see
equation (4.1)). Numerical simulations show that the approximation scheme presented here
improves considerably the usual approximation. Furthermore it is valid for 0 < α � ∞, i.e.
when α = ∞ equation (4.5) gives exactly the usual approximation.

The first exit time of a linear dynamic system with a ‘coloured’ noise perturbation has
been widely discussed in the literature and different analytical approaches to estimate it have
been put forward. We will discuss it in a subsequent publication.

Finally we point out that, much as we confine ourselves to the α-wave inputs, the approach
presented here is readily generalized to any form of current inputs by calculating the constant
c in equation (4.3).

5. Biophysical models

We apply the results of the previous section to biophysical models. In fact the generalization is
almost straightforward since essentially we have approximated synaptic inputs in the previous
section.

We consider the following Hodgkin–Huxley model with parameters given in the
literature [3]:

C dV = −gNam
3h(V − VNa) dt − gkn

4(V − Vk) dt − gL(V − VL) dt + Isyn(t) dt (5.1)

where
dn

dt
= n∞ − n

τn

dm

dt
= m∞ − m

τm

dh

dt
= h∞ − h

τh

and

n∞ = αn

αn + βn

m∞ = αm

αm + βm

h∞ = αh

αh + βh

τn = 1

αn + βn

τm = 1

αm + βm

τh = 1

αh + βh

with

αn = 0.01(V + 55)

1 − exp (−V +55
10 )

βn = 0.125 exp

(
−V + 65

80

)

αm = 0.1(V + 40)

1 − exp (−V +40
10 )

βm = 4 exp

(
−V + 65

18

)

αh = 0.07 exp

(
−V + 65

20

)
βh = 1

exp (−V +35
10 ) + 1

.

The parameters used in equation (5.1) are C = 1, gNa = 120, gK = 36, gL = 0.3, Vk =
−77, VNa = 50 and VL = −54.4. All parameters in synaptic inputs are the same as in
the previous sections except that a = b = 1., since when a = b = 0.5 the firing time
is too long (cf [3], figure 1). The initial values for m, n, h and the membrane potential are
0.0529, 0.317, 0.5961 and −65, respectively.

Figure 5 plots a comparison with different inputs with α = 1. Again it is evident to see
that the novel approach of the previous section gives a much better approximation than the
usual approximation. Comparing to the results obtained from the integrate-and-fire model, we
see that both the usual approximation and the novel approach gives worse results. In other
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Figure 5. Mean and CV of α-wave inputs, the usual approximation and novel scheme inputs with
α = 1 for the Hodgkin–Huxley model (numerical results).

words, the noninstantaneous input has more impact on the biophysical model than on the
integrate-and-fire model, which is basically a linear model.

From figure 5 we might conclude that, with current inputs, the efferent spike trains of the
Hodgkin–Huxley model are quite regular with a CV less than 0.5. However, when standard
deviation, s, of output ISI is plotted against mean firing time, m, we obtain approximately
straight lines (cf figure 6):

s = km − r. (5.2)

This suggests an effective refractory period of about m = r/k. We note that, for inputs of
the usual approximation, it is about 10.46 ms and for α-wave inputs it is 11.25 ms. This
implies that, once the effective refractory period is subtracted from each ISI, CV is about
0.65 for Poisson inputs and 0.8 for α-wave inputs. The CV and refractory period of the usual
approximation are both smaller than that of the α wave. The conclusions above agrees with our
basic belief, that all neurons fire irregularly when subjected to sufficient low intensity random
input, and almost all neurons fire regularly if driven very hard.

The conclusions above are further tested in figures 7 and 8 with α = 0.5. We see that all
conclusions remain true.

The Hodgkin–Huxley model is numerically solved using an algorithm for stiff equations
from the NAG library (D02NBF) with step size of 0.01. Further small step sizes are used and
we conclude no significant improvements are observed. The spike detecting threshold used in
the simulations for the Hodgkin–Huxley model is 0 mV, as we employed before [3].

6. Discussion

We have presented a theoretical and numerical approach for studying the impact of
noninstantaneous inputs on the output of neuronal models. For α-wave and square-wave
inputs, and any noninstantaneous inputs, analytical and numerical results are obtained for the
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Figure 6. Standard deviation against mean firing time for the Hodgkin–Huxley model with α-wave
inputs and the usual approximation inputs, α = 1. Lines are obtained from linear regressions.
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Figure 7. Mean and CV of α-wave inputs, the usual approximation and novel scheme inputs with
α = 0.5 for the Hodgkin–Huxley model (numerical results).

usual approximation which essentially reveals the difference between the instantaneous and
noninstantaneous inputs. When the ratio between inhibitory and excitatory inputs is low and the
rising time is short, the usual approximation produces satisfying results for the integrate-and-
fire model, but not for the Hodgkin–Huxley model. We then proposed a new approximation
scheme based upon a superposition of ‘white’ and ‘coloured’ noise to approximate neuronal
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Figure 8. Standard deviation against mean firing time for the Hodgkin–Huxley model with α-wave
inputs and the usual approximation inputs, α = 0.5. Lines are obtained from linear regressions.

models with current inputs. Numerical simulations show that the new scheme considerably
improves the approximation. Sinceα-wave inputs are much closer to actually biological reality
than instantaneous inputs and are widely applied in modeling neural activities, we conclude
that in studying neuronal activities subjected to synaptic inputs it is reasonable to replace the
classical Ornstein–Uhlenbeck process by the following process:

ĩsyn(t) = [apλE − bqλI]t +
√
a2pλE + b2qλI

[
Bt − 4 − √

5

2
ξα(t)

]

dξα(t) = −α

2
ξα(t) dt + dBt

ξα(0) = 0.

(6.1)

This also opens up new theoretical problems such as how to estimate the first exit time of
neuronal models subjected to a superposition of ‘white’ and ‘coloured’ noise inputs as defined
by equation (6.1). A few issues we are going to explore further are:

• It is worth studying further the effect of more biologically realistic inputs such as AMPA,
NMDA, GABAA and GABAB on the output of neuronal models. AMPA and GABAA

are fast and equivalent to the case of a large α, while NMDA and BABAB are slow and
equivalent to a small α. We refer the reader to [13], which is a direct application of our
current results, for details.

• We have observed in the present paper that α plays a more important role in the nonlinear
model (the Hodgkin–Huxley model) than the ‘linear’ model (the integrate-and-fire model).
The usual diffusion approximation gives poor results in estimating the mean first exit time
and CV for some parameter values in the case of the integrate-and-fire neuron, but for
most parameter values in the case of the Hodgkin–Huxley neuron. In fact, how the
correlation in inputs (the coloured noise term) affects the output of a nonlinear system
has been extensively studied in the past few years, see, e.g., [14]. We expect that α could
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play a role of a ‘time switcher’ in neuronal models: the input could be subthreshold or
superthreshold, by controlling α alone.
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